MongoDB $log

In MongoDB, the $log aggregation pipeline operator calculates the log of a number in the specified base and returns the result as a double.

Syntax

The syntax goes like this:

{ $log: [ <number>, <base> ] }

Where:

  • <number> can be any valid expression that resolves to a non-negative number.
  • <base> can be any valid expression that resolves to a positive number greater than 1.

Example

Suppose we have a collection called test with the following document:

{ "_id" : 1, "data" : 0.5 }
{ "_id" : 2, "data" : 20 }
{ "_id" : 3, "data" : 200 }

We can use the $log operator to return the log base 10 of the data field:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 1, 2, 3 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", 10 ] }
        }
    }
  ]
)

Result:

{ "data" : 0.5, "result" : -0.30102999566398114 }
{ "data" : 20, "result" : 1.301029995663981 }
{ "data" : 200, "result" : 2.301029995663981 }

Another way of doing this would have been to use the $log10 operator.

However, $log10 only returns the log base 10 of a number. With $log, on the other hand, we can specify the base to use.

Here’s an example of specifying a base of 16:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 1, 2, 3 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", 16 ] }
        }
    }
  ]
)

Result:

{ "data" : 0.5, "result" : -0.25 }
{ "data" : 20, "result" : 1.0804820237218407 }
{ "data" : 200, "result" : 1.910964047443681 }

Natural Logarithm

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, where e is an irrational and transcendental number that starts off with 2.7182818284590452353602874713527 and continues on forever.

The mathematical constant e is also known as Euler’s number.

In JavaScript, we can use Math.E to represent e. We can therefore get the natural logarithm of a number by using Math.E as the second argument when using $log.

Example:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 1, 2, 3 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", Math.E ] }
        }
    }
  ]
)

Result:

{ "data" : 0.5, "result" : -0.6931471805599453 }
{ "data" : 20, "result" : 2.995732273553991 }
{ "data" : 200, "result" : 5.298317366548036 }

Bear in mind that MongoDB also has the $ln operator, which is specifically designed to return the natural logarithm of a number, so you might find it easier to use that operator instead. See MongoDB $ln for an example.

Out of Range Values

As mentioned, the $log operator accepts any valid expression that resolves to a non-negative number. Values outside of that range will cause an error.

Suppose we add the following document to our collection:

{ "_id" : 4, "data" : -20 }

Let’s run the the $log operator against that document:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 4 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", 16 ] }
        }
    }
  ]
)

Result:

uncaught exception: Error: command failed: {
	"ok" : 0,
	"errmsg" : "$log's argument must be a positive number, but is -20",
	"code" : 28758,
	"codeName" : "Location28758"
} : aggregate failed :
_getErrorWithCode@src/mongo/shell/utils.js:25:13
doassert@src/mongo/shell/assert.js:18:14
_assertCommandWorked@src/mongo/shell/assert.js:639:17
assert.commandWorked@src/mongo/shell/assert.js:729:16
DB.prototype._runAggregate@src/mongo/shell/db.js:266:5
DBCollection.prototype.aggregate@src/mongo/shell/collection.js:1058:12
@(shell):1:1

Wrong Data Type

Providing the wrong data type will also cause an error.

Suppose we add the following document to our collection:

{ "_id" : 5, "data" : "Ten" }

Let’s run the the $log operator against that document:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 5 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", 16 ] }
        }
    }
  ]
)

Result:

uncaught exception: Error: command failed: {
	"ok" : 0,
	"errmsg" : "$log's argument must be numeric, not string",
	"code" : 28756,
	"codeName" : "Location28756"
} : aggregate failed :
_getErrorWithCode@src/mongo/shell/utils.js:25:13
doassert@src/mongo/shell/assert.js:18:14
_assertCommandWorked@src/mongo/shell/assert.js:639:17
assert.commandWorked@src/mongo/shell/assert.js:729:16
DB.prototype._runAggregate@src/mongo/shell/db.js:266:5
DBCollection.prototype.aggregate@src/mongo/shell/collection.js:1058:12
@(shell):1:1

We provided a string, and so the error message tells us that $log's argument must be numeric, not string.

Null Values

Null values return null when using the $log operator.

Suppose we add the following document to our collection:

{ "_id" : 6, "data" : null }

Let’s run the the $log operator against that document:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 6 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data", 16 ] }
        }
    }
  ]
)

Result:

{ "data" : null, "result" : null }

We can see that the result is null.

NaN Values

If the argument resolves to NaN$log returns NaN.

Example:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 1 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$data" * 1, 16 ] }
        }
    }
  ]
)

Result:

{ "data" : 0.5, "result" : NaN }

Non-Existent Fields

If the $log operator is applied against a field that doesn’t exist, null is returned.

Example:

db.test.aggregate(
  [
    { $match: { _id: { $in: [ 1 ] } } },
    {
      $project:
        { 
          _id: 0,
          data: 1,
          result: { $log: [ "$age", 16 ] }
        }
    }
  ]
)

Result:

{ "data" : 0.5, "result" : null }

In this case we tried to apply $log against a field called age, but that field doesn’t exist in the document, and so we get null.